## Secoiridoid Glycosides from Swertia mileensis

by Yan Zhou<sup>a</sup>), Ying-Tong Di<sup>a</sup>), Suolang Gesang<sup>b</sup>), Shu-Lin Peng<sup>a</sup>), and Li-Sheng Ding<sup>\*a</sup>)

 <sup>a</sup>) Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, P. R. China (phone: +86-28-85239109; fax: +86-28-85223843; e-mail: lsding@cib.ac.cn)
 <sup>b</sup>) Tibet Autonomous Region Institute for Drug Control, Lasa 850000, P. R. China

From the MeOH extract of the aerial parts of *Swertia mileensis*, four new secoiridoid glycosides were isolated, 4'-O-[(E)-caffeoyl]swertiamarin (1), 4'-O-[(Z)-coumaroyl]swertiamarin (7), 6'-O-[(E)-coumaroyl]swertiamarin (8), and 6'-O-[(Z)-coumaroyl]swertiamarin (9), together with five known compounds. Their structures were elucidated by NMR spectroscopy and tandem mass spectrometry. Detailed HPLC/MS analyses and MS/MS fragmentation pathways are discussed for the identification of the swertiamarin-derived (E)/(Z) isomers 6/7 and 8/9.

**Introduction.** – Swertia mileensis T. N. HE et SHI, traditionally known as 'Qing-Ye-Dan', is a species of Swertia, belonging to the family Gentianaceae. This plant has long been used as a folk medicine in Yunnan Province, China, to treat virus-induced hepatitis [1-3]. Previous phytochemical investigations of this plant revealed the presence of secoiridoid glucosides and acyl secoridoid glucosides [3-5], of which swertiamarin and sweroside, which display antihepatotoxic and antitumor activities, are the main components [6]. Other compounds identified in this plant include xanthones, triterpenoids, and monoterpenoid glycosides [7-9].

The continuous investigation and careful examination of *S. mileensis* led to the isolation of nine compounds, 1-9, including four new secoiridoid glycosides, 1 and 7-9, and of five known compounds, 2-6. This paper deals with the isolation and structure elucidation of the new compounds, and the application of HPLC-UV-MS methods for the discrimination of swertiamarins with (*E*)- vs. (*Z*)-configured coumaroyl substituents on their glycones (compounds 6-9).

**Results and Discussion.** – The MeOH extract from the aerial parts of *S. mileensis* was investigated by liquid chromatography with photodiode-array and electrosprayionization-mass-spectrometric detection (HPLC/PDA/ESI-MS). A total of nine wellseparated signals were observed, and the corresponding compounds isolated (*Table 1*). Comparison of the HPLC profiles of the pure secoiridoid glycosides with the original crude MeOH extract showed that all compounds are naturally occurring.

Compound **1** was obtained as a colorless, amorphous powder. Its molecular formula was determined as  $C_{25}H_{28}O_{13}$  by HR-FAB-MS (m/z 535.1528 ( $[M-H]^-$ ; calc. 535.1452)). Its IR spectrum indicated the presence of OH groups (3107, 3474 cm<sup>-1</sup>) and of a conjugated C=O group (1697, 1613 cm<sup>-1</sup>). The structure of **1** was established by analysis of <sup>1</sup>H- and <sup>13</sup>C-NMR (see *Tables 2* and *3* in the *Exper. Part*, resp.), DEPT, HSQC, HMBC, and tandem-MS experiments.

<sup>© 2006</sup> Verlag Helvetica Chimica Acta AG, Zürich



Table 1. HPLC Retention Times, UV Data, and Selected MS Characteristics of Compounds 1–9 in the Extract of S. mileensis

| Compound | <i>t</i> <sub>R</sub> [min] | $\lambda_{\max} \text{ [nm] } (\log \varepsilon)$ | MS Data $[m/z]$ |          |          |  |
|----------|-----------------------------|---------------------------------------------------|-----------------|----------|----------|--|
|          |                             |                                                   | $[M + Na]^+$    | MS/MS    | MS/MS/MS |  |
| 1        | 12.6                        | 233 (5.10)                                        | 559             | 417      | 347      |  |
| 2        | 15.0                        | 236 (3.92)                                        | 397             | 255      |          |  |
| 3        | 16.5                        | 242, 274 (4.22, 4.06)                             | 379             | 217, 199 | 199, 172 |  |
| 4        | 17.3                        | 244 (3.29)                                        | 381             | 219, 149 | 166, 149 |  |
| 5        | 23.3                        | 235, 271 (5.15, 4.87)                             | 573             | 431, 361 | 361, 167 |  |
| 6        | 25.3                        | 314 (5.30)                                        | 543             | 401      | 331      |  |
| 7        | 27.4                        | 311 (4.49)                                        | 543             | 401      | 331      |  |
| 8        | 25.8                        | 312 (5.23)                                        | 543             | 401      | 331      |  |
| 9        | 26.1                        | 308 (4.57)                                        | 543             | 401      | 331      |  |
|          |                             |                                                   |                 |          |          |  |

The <sup>1</sup>H-NMR spectrum of **1** showed the presence of a *trans*-caffeoyl<sup>1</sup>) moiety, which was evident from three aromatic H-atoms forming an *ABX* system [ $\delta(A)$  7.02,  $\delta(B)$  7.01,  $\delta(X)$  6.76;  $J(AB) = J(AX) \approx 0$ , J(BX) = 8.2 Hz], and two H-atoms of an (*E*)-configured C=C bond at  $\delta(H)$  6.25, 7.48 (2*d*, J = 15.9 Hz each). Furthermore, the signals at  $\delta(H)$  7.52 (*s*, 1 H), 5.38 (*ddd*, J = 16.1, 9.0, 7.8 Hz, 1 H), 5.25 (*ddd*, J = 9.0, 6.2, 2.5 Hz, 1 H), and 5.31 (*dd*, J = 16.0, 6.2 Hz, 1 H), were assigned to H–C(3), H–C(8), and CH<sub>2</sub>(10), respectively, of the presumed secoiridoid skeleton. In addition, an anomeric H-atom was observed at  $\delta(H)$  4.60 (*d*, J = 8.1 Hz), which combined with the <sup>13</sup>C-NMR signals at  $\delta(C)$  98.2, 75.1, 73.3, 73.0, 71.0, and 60.6, typical for a  $\beta$ -glucopyranosyl moiety. This was further corroborated by TLC comparison of the hydrolysis product of **1** with an authentic glucose sample.

In the HMBC spectrum of **1** (*Fig. 1*), the anomeric H-C(1') at  $\delta(H)$  4.60 showed a correlation with C(1) at  $\delta(C)$  96.6; and a correlation of H-C(4') at  $\delta(H)$  4.66 with C=O at  $\delta(C)$  165.8 was also observed. This pointed to a 4'-O-(*E*)-caffeoyl-swertiamarin, as further confirmed by tandem-mass-spectrometric

<sup>&</sup>lt;sup>1</sup>) Caffeoyl = (E)-3-(3,4-dihydroxyphenyl)prop-2-enoyl.



Fig. 1. Key HMBC correlations and MS fragmentation for 1

analysis. The ESI-MS spectrum of **1** showed the pseudomolecular ion at m/z 559 ( $[M+Na]^+$ ), and tandem MS showed fragment ions at m/z 417 ( $[M+Na-142]^+$ ) and 347 ( $[M+Na-212]^+$ ), corresponding to a *retro-Diels–Alder* cleavage within the aglycone and to the loss of the aglycone unit, respectively (*Fig. 1*).

Compounds 6 and 7 exhibited interesting spectroscopic features due to stereoisomerism. In HPLC-UV/MS experiments (*Fig. 2, a*), the UV spectroscopic characteristics of compounds 6 ( $\lambda_{max}$ =314 nm (log  $\varepsilon$ =5.30)) and 7 ( $\lambda_{max}$ =311 nm (log  $\varepsilon$ =4.49)) could reasonably be attributed to (*E*)- and (*Z*)-configured *p*-coumaroyl<sup>2</sup>) units [10]. Furthermore, both 6 and 7 showed intense [*M*+Na]<sup>+</sup> and [*M*-H]<sup>-</sup> ion peaks in positive and negative-mode mass spectra, respectively, in accord with identical molecular weights of 520 g/mol. The observed frament ion at *m/z* 147 is characteristic of a *p*-coumaroyl group [10].

Compound  $\mathbf{6}$  could be obtained in pure form, but  $\mathbf{7}$  rapidly isomerized to a mixture of the two isomers. By comparison with published spectroscopic data, **6** was identified as 4'-O-[(E)-coumaroy] swertiamarin, which has been isolated before [3]. The chemical shifts corresponding to the coumaroyl moieties of 6 and 7 at  $\delta(H)$  5–8 ppm indicated structural differences between the two compounds. The olefinic Hatoms of **6** at  $\delta$ (H) 6.39 and 7.51 (2d, J = 16 Hz each,  $2 \times 1$  H) were shifted upfield to  $\delta$ (H) 5.76 and 6.92 (2d, J=12 Hz each) in the case of 7. Also, the four aromatic H-atoms of 7 at  $\delta(H)$  6.78 and 7.68 (2d, J=8.4 Hz each,  $2\times 2$  H) established the presence of a (Z)-coumaroyl moiety [11]. Subsequently, a detailed 2D-NMR analysis was performed that corroborated the proposed structure of 7. Briefly, <sup>1</sup>Hand <sup>13</sup>C-NMR assignments were confirmed by long-range C,H correlations (Fig. 3,a). The positions of glycosidation were obvious from the cross-peaks in the HMBC spectrum, which showed interactions of H-C(1') at  $\delta(H)$  4.58 with C(1) at  $\delta(C)$  96.6, and of H-C(4') at  $\delta(H)$  4.61 with C(9'') at  $\delta(C)$  165.9. Thus, the structure of 7 was elucidated as 4'-O-[(Z)-coumaroyl]swertiamarin. Finally, tandem mass spectrometry was used to elucidate the structures of 6 and 7. In MS/MS experiments with the precursor ion at m/z 543 ( $[M+Na]^+$ ), an intense ion at m/z 401 was observed due to retro-Diels-Alder cleavage in the secoiridoid aglycone. In the MS/MS/MS spectrum, the fragment ion at m/z 401 produced a further ion at m/z 331 (see Table 1 and Fig. 3,a).

Compounds 8 and 9, eluting at 10.62 and 11.26 min, respectively, showed UV maxima at 312 (log  $\varepsilon = 5.23$ ) and 308 nm (4.47) (*Fig. 2,b*). Both compounds showed peaks at

<sup>&</sup>lt;sup>2</sup>) Coumaroyl = (E)-3-(4-hydroxyphenyl)prop-2-enoyl.



Fig. 2. HPLC Profiles of the mixtures of 6/7 (a) and 8/9 (b). For details, see Exper. Part.



Fig. 3. Key HMBC correlations and MS fragmentations for 6 and 7. Similar data were obtained for the congeners 8 and 9, resp.

m/z 543 ( $[M + Na]^+$ ) and at 519 ( $[M - H]^-$ ) in positive- and negative-mode mass spectra, consistent with identical molecular weights of 520 g/mol. Their tandem mass spectra of the  $[M + Na]^+$  ions showed a fragmentation pattern very similar to those of **6** and **7**. Specifically, a *retro-Diels–Alder* cleavage in the secoiridoid aglycone gave rise to ions at m/z 401 in MS/MS spectra, and cleavage of the glucosidic bond formed the ion at m/z 331 in MS/MS/MS spectra. According to its <sup>1</sup>H- and <sup>13</sup>C-NMR spectra, **8** possessed a swertiamarin aglycone and an (*E*)-coumaroyl moiety, and the only difference between **8** and **6** laid in the glucosidic part. In the <sup>13</sup>C-NMR spectrum of **8**, C(6') of the  $\beta$ -glucopyranosyl (Glc) residue was shifted downfield to  $\delta$ (C) 63.2 ( $\Delta \delta = +2.6$  ppm), which suggested that the Glc moiety was esterified at C(6') [12]. Additionally, in the HMBC spectrum, a correlation of H–C(6') at  $\delta$ (H) 4.37 with C(9'') at  $\delta$ (C) 165.9 was observed. Hence, the coumaroyl moiety was attached to C(6') of Glc, and compound **8** was identified as 6'-O-[(*E*)-coumaroyl]swertiamarin, with **9** being the corresponding (*Z*)-isomer.

By comparison with authentic samples, the remaining isolates were identified as swertiamarin (2) [13], gentiopicroside (3) [14], sweroside (4) [13], and angustiamarin (5) [13][15]. The <sup>1</sup>H- and <sup>13</sup>C-NMR spectroscopic data of the new compounds 1 and 7–9, as well as those of 6, are collected in *Tables 1* and 2, respectively, in the *Exper. Part.* 

This work was supported by a grant from the National Natural Sciences Foundation of the People's Republic of China (Grant No. 30450005).

## **Experimental Part**

General. Column chromatography (CC): Silica gel (200–300 mesh; Qingdao Marine Chemical Group, Co.), Lobar LiChroprep RP-18 (40–63 µm; Merck), Lobar LiChroprep Si-60 (40–63 µm; Merck), or Sephadex LH-20 (Pharmacia). Optical rotation: Perkin-Elmer 341 polarimeter. IR Spectra: Perkin-Elmer Spectrum One FT-IR spectrometer; in cm<sup>-1</sup>. NMR Spectra: Bruker AM-400 spectrometer;  $\delta$  in ppm rel. to Me<sub>4</sub>Si as internal standard, J in Hz. HR-FAB-MS: VG AutoSpec-3000. HPLC/ESI-MS and tandem MS: Finnigan LCQ<sup>DECA</sup>; in m/z.

*Plant Material.* The aerial parts of *S. mileensis* were collected in 1999 from Chuxiong, Yunnan Province, China, and identified by Prof. *Zuo-Cheng Zhao.* A voucher specimen was deposited at the Herbarium of the Chengdu Institute of Biology, Chinese Academy of Sciences.

*Extraction and Isolation.* The dried and powdered aerial parts of *S. mileensis* (9 kg) were extracted with EtOH at r.t. (3×8 d), filtered, and evaporated. The resulting extract (1.6 kg) was suspended in H<sub>2</sub>O and re-extracted with CHCl<sub>3</sub>, AcOEt, and *t*-BuOH in this order. The AcOEt-soluble part (63 g) was subjected to CC (SiO<sub>2</sub>; CHCl<sub>3</sub>/Me<sub>2</sub>CO 10:0, 9:1, 8:2, 7:3, 5:5, 0:10): *Fr. 1–10. Fr. 3* was subjected to CC (*RP-18*; MeOH/H<sub>2</sub>O 6:1, 3:1, 2:1) to afford *Fr. 3.1–3.4*, which were individually purified by CC (*RP-18*) to afford **5** (115 mg), **6** (75 mg), and mixtures of **6** and **7** (60 mg), and **8** and **9** (176 mg). *Fr. 4* was purified by CC (1. *Sephadex LH-20*, MeOH; 2. *Si-60*, AcOEt/MeOH mixtures of increasing polarity, starting at 15:1): *Fr. 4.1–4.7. Fr. 4.2* was purified by CC (*RP-18*; MeOH/H<sub>2</sub>O 5:1, 2:1, 1:1) to yield **1** (120 mg). *Fr. 4.3* was submitted to CC (*RP-18*) to give **2** (98 mg). *Fr. 4.5* was purified by CC (*RP-18*; MeOH/H<sub>2</sub>O 1:3) to provide **3** (160 mg) and **4** (700 mg).

*HPLC-UV Analysis.* Anal. HPLC was performed with a *TSP* HPLC system (*Thermo Quest*, Tokyo) equipped with an *AS-3000* autosampler, two *P4000* gradient pumps, and a *UV-6000* photodiode-array detector (200–400 nm range; 5-nm bandwidth). Separations were performed on an *Inertsil ODS-3* ( $250 \times 4.6 \text{ mm}$ ; 5 µm)  $C_{18}$  column, eluting at a flow rate of 1.0 ml/min with MeOH/H<sub>2</sub>O gradients: 1. 10–30% MeOH from 0 to 10 min; 2. 30–50% MeOH from 10 to 20 min; 3. 50–100% MeOH from 20 to 30 min; 4. 100% MeOH for 10 min. For purification of **6/7** and **8/9** by anal. HPLC, MeOH/H<sub>2</sub>O 50:50 was used at a flow rate of 1 ml/min, with detection at 236 nm.

*HPLC/MS Analysis.* The following conditions were used for ESI-MS: capillary temperature,  $350^{\circ}$ ; spray voltage, 4.5 kV; capillary voltage, 5.0 V (const.); full scan at  $m/z \ 100-1000$ , with 500-ms collection time, summing three micro scans; N<sub>2</sub> gas flow, setting the divert valve to the mass spectrometer from 2–40 min. MS/MS and MS/MS/MS Spectra were recorded under the same conditions as for HPLC/MS analyses, with optimized relative collision energies of 30 and 40%, resp. The HPLC effluent was split such that *ca.* 250 µl/min of effluent entered the ESI source.

4'-O-[(E)-3-(3,4-Dihydroxyphenyl)prop-2-enoyl]swertiamarin (1). Yield: 120 mg. Yellow, amorphous powder. M.p. 144.0–145.5°. UV: see *Table 1*.  $[a]_{D}^{15.8} = -168$  (c=0.79, MeOH). IR (KBr): 3474, 3107, 2921, 1697, 1613. <sup>1</sup>H- and <sup>13</sup>C-NMR: see *Tables 2* and 3, resp. ESI-MS (pos.): 559 ( $[M+Na]^+$ ). ESI-MS (neg.): 535 ( $[M-H]^-$ ). HR-FAB-MS: 535.1528 (( $[M-H]^-$ ,  $C_{25}H_{27}O_{13}^-$ ; calc. 535.1452). Tandem MS: see *Table 1*.

*Swertiamarin* (2) [13]. Yield: 98 mg. Colorless, amorphous powder. M.p.  $104-106^{\circ}$ . UV: see *Table 1*. <sup>1</sup>H-NMR (400 MHz, C<sub>3</sub>D<sub>5</sub>N): 7.89 (br. *s*, H–C(3)); 5.92 (br. *s*, H–C(1)); 5.28 (*d*, *J*=8.0, H–C(1')); 5.03-5.22 (*m*, H–C(8), CH<sub>2</sub>(10)); 4.26-4.31, 4.73-4.79 (*m*, CH<sub>2</sub>(7)); 2.99 (*d*, *J*=9.9, H–C(9)); 1.66-1.79 (*m*, CH<sub>2</sub>(6)). <sup>13</sup>C-NMR (100 MHz, C<sub>3</sub>D<sub>5</sub>N): 165.0 (C=O); 152.2 C(3); 132.7 (C(8)); 120.5 (C(10)); 109.7 (C(4)); 99.0 (C(1')); 97.5 (C(1)); 79.2 (C(5')); 78.4 (C(3')); 74.6 (C(2')); 71.3 (C(4')); 64.5 (C(7)); 64.0 (C(5)); 62.4 (C(6')); 50.7 (C(9)); 32.8 (C(6)). ESI-MS (pos): 397 ([*M*+Na]<sup>+</sup>). Tandem MS: see *Table 1*.

*Gentiopicroside* (**3**) [14]. Yield: 160 mg. Colorless, amorphous powder. M.p. 99–102°. UV: see *Table 1*. <sup>1</sup>H-NMR (400 MHz, (D<sub>6</sub>)DMSO): 7.40 (*s*, H–C(3)); 5.67–5.71 (*m*, H–C(8)); 5.60–5.66 (*m*, H–C(6)); 5.58 (*d*, J=3.2, H–C(1)); 5.27 (br. *d*, J=15.7, H<sub>a</sub>–C(10)); 5.20 (br. *d*, J=9.0, H<sub>b</sub>–C(10)); 5.03–4.95 (*m*, CH<sub>2</sub>(7)); 4.49 (*d*, J=8.0, H–C(1')); 3.10–3.14 (*m*, H–(9)). <sup>13</sup>C-NMR (100 MHz, (D<sub>6</sub>)DMSO): 172.7 (C(11)); 148.8 (C(3)); 134.0 (C(8)); 125.0 (C(5)); 117.9 (C(10)); 116.1 (C(6)); 103.3 (C(4)); 98.8 (C (1')); 96.5 (C(1)); 77.3 (C(5')); 76.6 (C(3')); 72.8 (C(2')); 70.0 (C(4')); 69.1 (C(7)); 61.1 (C(6')); 44.4 (C(9)). ESI-MS (pos): 379 ([M+Na]<sup>+</sup>). ESI-MS (neg.): 355 ([M-H]<sup>-</sup>). Tandem MS: see *Table 1*.

*Sweroside* (4) [13]. Yield: 700 mg. Colorless, amorphous powder. M.p.  $98-100^{\circ}$ . UV: see *Table 1*. <sup>1</sup>H-NMR (400 MHz, C<sub>3</sub>D<sub>5</sub>N): 7.90 (*s*, H–C(3); 5.78 (br. *s*, H–C(1)); 5.29–5.33 (*m*, H–C(8)); 5.29 (*d*, *J*=8.0, H–C(1')); 5.07 (br. *d*, *J*=15, H<sub>a</sub>–C(10)); 5.01 (br. *d*, *J*=9.0, H<sub>b</sub>–C(10)); 4.74–4.77, 4.25–4.29 (2*m*, CH<sub>2</sub>(7)); 2.97–2.30 (*m*, H–C(5)); 2.63 (*d*, *J*=9.0, H–C(9)); 1.65–1.78 (*m*, CH<sub>2</sub>(6)). <sup>13</sup>C-NMR (100 MHz, C<sub>3</sub>D<sub>5</sub>N): 165.1 (C(11)); 152.5 (C(3)); 132.5 (C(8)); 120.0 (C(10)); 105.2 (C(4)); 100.5 (C(1')); 97.3 (C(1)); 78.9 (C(5')); 78.4 (C(3')); 74.9 (C(2')); 71.4 (C(4')); 67.8 (C(7)); 62.5 (C(6')); 42.9 (C(9)); 27.7 (C(5)); 25.0 (C(6)). ESI-MS (pos.): 381 ([*M*+Na]<sup>+</sup>). ESI-MS (neg.): 357 ([*M*-H]<sup>-</sup>). Tandem MS: see *Table 1*.

Angustiamarin (5) [13][15]. Yield: 115 mg. Yellow, amorphous powder. M.p. 115–119°. UV: see Table 1. <sup>1</sup>H-NMR (400 MHz, (D<sub>6</sub>)DMSO): 7.54 (*d*, J=16.0, H–C(7″)); 7.51 (*s*, H–C(3)); 7.33 (*d*, J=2.4, H–C(2″)); 7.01 (*dd*, J=8.0, 2.4, H–C(6″)); 6.78 (*d*, J=8.0, H–C(5″)); 6.28 (*d*, J=16.0, H–C(8″)); 5.60 (br. *s*, H–C(1)); 5.36–5.40 (*m*, H–C(8)); 5.29–5.32 (*m*, H<sub>a</sub>–C(10)); 5.18–5.21 (*m*, H<sub>b</sub>–C(10)); 4.57–4.62, 4.26–4.30 (2*m*, CH<sub>2</sub>(7)); 4.58 (*d*, J=8.0, H–C(1′)); 3.81 (*s*, MeO); 2.88 (*d*, J=0.7, H–C(9)); 1.65–1.74 (*m*, CH<sub>2</sub>(6)). <sup>13</sup>C-NMR (100 MHz, (D<sub>6</sub>)DMSO): 165.9 (C(9″)); 164.4 (C(11)); 151.9 (C(3)); 149.4 (C(3″)); 147.9 (C(4″)); 145.4 (C(7″)); 132.8 (C(8)); 125.5 (C(1″)); 123.3 (C(6″)); 120.4 (C(10)); 115.5 (C(5″)); 114.3 (C(8″)); 111.1 (C(2″)); 108.2 (C(4)); 98.2 (C(1′)); 96.6 (C(1)); 75.1(C(5′)); 73.4 (C(3')); 73.0 (C(2′)); 71.0 (C(4′)); 64.1 (C(7)); 62.4 (C(5)); 60.8 (C(6′)); 55.7 (MeO); 49.9 (C(9)); 32.1 (C(6)). ESI-MS: 573 ([*M*+Na]<sup>+</sup>); 549 ([*M*-H]<sup>-</sup>). Tandem MS: see *Table 1*.

4'-O-[(E)-3-(4-Hydroxyphenyl)prop-2-enoyl]swertiamarin (6) [3]. Yield: 75 mg. Colorless, amorphous powder. M.p. 118–122°. UV: see *Table 1*.  $[a]_{25}^{D} = -102$  (c=0.24, MeOH). IR (KBr): 3600–3100, 1720, 1700, 1620, 1515. <sup>1</sup>H- and <sup>13</sup>C-NMR: see *Tables 2* and 3, resp. ESI-MS (pos.): 543 ( $[M+Na]^+$ ). ESI-MS (neg.): 519 ( $[M-H]^-$ ). Tandem MS: see *Table 1*.

4'-O-[(Z)-3-(4-Hydroxyphenyl)prop-2-enoyl]swertiamarin (7). Yield: 60 mg. Colorless, amorphous powder (mixture with 6; see text). M.p. 114–122°. UV: see *Table 1*. <sup>1</sup>H- and <sup>13</sup>C-NMR: see *Tables 2* and 3, resp. ESI-MS (pos.): 543 ( $[M+Na]^+$ ). ESI-MS (neg.): 519 ( $[M-H]^-$ ). Tandem MS: see *Table 1*.

6'-O-[(E)-3-(4-Hydroxyphenyl)prop-2-enoyl]- (8) and 6'-O-[(Z)-3-(4-Hydroxyphenyl)prop-2-enoyl]swertiamarin (9). Colorless, amorphous powder. Yield: 176 mg. M.p. 126–131°. UV: see Table 1.

|                  | Table 2. <sup>1</sup> H-NMR Data e                                                         | of Compounds 1 and 6–9. At                                         | 400 MHz in $(D_6)$ DMSO; $\delta$ i                                                  | n ppm, J in Hz. Arbitrary atc                                                                                  | m numbering.                                                          |
|------------------|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|
|                  | 1                                                                                          | 6                                                                  | 7                                                                                    | 8                                                                                                              | 6                                                                     |
| H-C(1)<br>H-C(3) | 5.60 $(d, J = 1.5 \text{ H})$<br>7 52 $(c)$                                                | 5.59 $(d, J=1.5)$<br>7 50 $(s)$                                    | 5.59 $(d, J=1.5)$<br>7 50 $(c)$                                                      | 5.38 $(d, J = 1.5)$<br>7 50 $(s)$                                                                              | 5.38 $(d, J=1.5)$<br>7 50 $(s)$                                       |
| $CH_2(6)$        | 1.67 ( <i>ddd</i> , $J = 14.0, 3.0, 1.5$ ),<br>1.72 ( <i>ddd</i> , $J = 14.0, 12.7, 5.3$ ) | 1.66 (ddd, J = 14.0, 3.2, 1.5),<br>1.73 (ddd, J = 14.0, 13.1, 5.1) | 1.50 (b)<br>1.66 (ddd, $J = 14.0, 3.2, 1.5$ ),<br>1.73 (ddd, $J = 14.0, 13.1, 5.1$ ) | 1.50 (3)<br>1.66 ( <i>ddd</i> , <i>J</i> = 13.9, 3.0, 1.3),<br>1.71 ( <i>ddd</i> . <i>J</i> = 13.9, 12.8, 5.3) | $1.66 \ (ddd, J = 13.9, 3.0, 1.3), 1.71 \ (ddd, J = 13.9, 12.8, 5.3)$ |
| $CH_2(7)$        | $4.28 \ (ddd, J = 11.0, 5.0, 1.4), 4.63 \ (ddd, J = 12.5, 11, 3.0)$                        | 4.27 (ddd, J = 11.0, 5.2, 1.5),<br>4.58 (ddd, J = 12.5, 10.9, 3.3) | 4.27 (ddd, J=11.0, 5.2, 1.5),<br>4.58 (ddd, J=12.5, 10.9, 3.3)                       | 4.24-4.28 (m),<br>4.58 (ddd, J=12.7, 10.6, 3.2)                                                                | $4.24-4.28 \ (m),$<br>$4.58 \ (ddd, J=12.7, 10.6, 3.2)$               |
| H-C(8)<br>H-C(9) | 5.38 $(ddd, J=16.1, 9.0, 7.8)$<br>2 88 $(ddd, I=8, 0, 1, 2, 1, 5)$                         | 5.40 $(ddd, J = 16.0, 8.2, 7.6)$<br>2.86 $(dd, I = 9, 3, 1, 5)$    | $5.40 \; (ddd, J=16.0, 8.2, 7.6)$ $2 \; 86 \; (d \; J=9\; 3\; 1\; 5)$                | 5.38 $(ddd, J=16.0, 7.8, 7.6)$<br>2 85 $(d I=90, 1, 3)$                                                        | 5.38 $(ddd, J = 16.0, 7.8, 7.6)$<br>2 85 $(d I = 9.0, 1.3)$           |
| $CH_2(10)$       | 5.25 (ddd, J=9.0, 6.2, 2.5),                                                               | 5.25 (ddd, J = 9.5, 6.3, 2.4),                                     | 5.25 (ddd, J=9.5, 6.3, 2.4),                                                         | $5.12 \ (ddd, J=9.0, 6.1, 2.5),$                                                                               | 5.12 (ddd, J = 9.0, 6.1, 2.5),                                        |
|                  | $5.31 \ (dd, J = 16.0, 6.2)$                                                               | 5.31 $(dd, J=16.1, 6.3)$                                           | $5.31 \ (dd, J=16.1, 6.3)$                                                           | 5.30 $(dd, J=16.0, 6.1)$                                                                                       | 5.30 (dd, J=16.0, 6.1)                                                |
| H-C(1')          | $4.60 \ (d, J = 8.1)$                                                                      | 4.58 (d, J = 8.0)                                                  | 4.58 (d, J=8.0)                                                                      | 4.56 (d, J = 8.0)                                                                                              | $4.56 \ (d, J = 8.0)$                                                 |
| H-C(2')          | $3.41 \ (dd, J=9.8, 8.1)$                                                                  | 3.37 (dd, J=9.3, 8.0)                                              | $3.37 \ (dd, J=9.3, 8.0)$                                                            | $3.07 \ (dd, J=9.1, 8.0)$                                                                                      | $3.07 \ (dd, J=9.1, 8.0)$                                             |
| H-C(3')          | $3.86 \ (dd, J=9.8, 9.8)$                                                                  | 3.83 (dd, J=9.3, 9.3)                                              | $3.83 \ (dd, J=9.3, 9.3)$                                                            | 3.34(t, J=9.1)                                                                                                 | 3.34 (t, J=9.1)                                                       |
| H-C(4')          | $4.66 \ (dd, J=9.5, 9.5)$                                                                  | $4.61 \ (dd, J=9.3, 9.3)$                                          | $4.61 \ (dd, J=9.3, 9.3)$                                                            | 3.19(t, J=9.1)                                                                                                 | 3.19 (t, J=9.1)                                                       |
| H–C(5')          | 3.53 - 3.57 (m)                                                                            | 3.55-3.59 (m)                                                      | 3.55-3.59 (m)                                                                        | 3.46 - 3.51 (m)                                                                                                | $3.46-3.51 \ (m)$                                                     |
| $CH_2(6')$       | 3.68 (dd, J=12.2, 1.8),                                                                    | 3.65 (dd, J=12.0, 2.0),                                            | 3.65 (dd, J=12.0, 2.0),                                                              | 4.37 (dd, J=11.9, 1.9),                                                                                        | 4.37 (dd, J=11.9, 1.9),                                               |
|                  | 3.55 (dd, J=12.2, 5.9)                                                                     | 3.55 (dd, J = 12.0, 5.5)                                           | 3.55 (dd, J=12.0, 5.5)                                                               | $4.22 \ (dd, J = 11.9, 5.6)$                                                                                   | $4.22 \ (dd, J=11.9, 5.6)$                                            |
| H-C(2")          | 7.02 (s)                                                                                   | 7.50 (d, J=8.4)                                                    | 7.68 (d, J=8.4)                                                                      | 7.53 (d, J = 8.4)                                                                                              | 7.65 (d, J=8.5)                                                       |
| H-C(3")          |                                                                                            | 6.78 (d, J=8.4)                                                    | 6.78 (d, J=8.4)                                                                      | 6.78 (d, J=8.4)                                                                                                | 6.78 (d, J=8.5)                                                       |
| H-C(5")          | 6.76 (d, J=8.2)                                                                            | 6.78 (d, J=8.4)                                                    | 6.78 (d, J=8.4)                                                                      | 6.78 (d, J = 8.4)                                                                                              | 6.78 (d, J=8.5)                                                       |
| H-C(6")          | $7.01 \ (d, J = 8.2)$                                                                      | 7.50 (d, J=8.4)                                                    | 7.68 (d, J=8.4)                                                                      | 7.53 (d, J=8.4)                                                                                                | 7.65 (d, J=8.5)                                                       |
| H-C(7")          | 7.48 (d, J=15.9)                                                                           | 7.51 (d, J = 16.0)                                                 | $(6.92 \ (d, J = 12.0))$                                                             | 7.55 (d, J=16.1)                                                                                               | 6.88 (d, J = 13.2)                                                    |
| H-C(8")          | 6.25 (d, J=15.9)                                                                           | 6.39 (d, J = 16.0)                                                 | 5.76 $(d, J = 12.0)$                                                                 | 6.40 (d, J = 16.1)                                                                                             | 5.75 $(d, J=13.2)$                                                    |

Helvetica Chimica Acta – Vol. 89 (2006)

| Position | 1     | 6     | 7     | 8     | 9     |
|----------|-------|-------|-------|-------|-------|
| 1        | 96.6  | 96.6  | 96.6  | 96.9  | 96.9  |
| 3        | 151.9 | 151.8 | 151.8 | 151.8 | 151.8 |
| 4        | 108.2 | 108.2 | 108.2 | 108.1 | 108.1 |
| 5        | 62.5  | 62.4  | 62.4  | 62.4  | 62.4  |
| 6        | 32.1  | 32.1  | 32.1  | 32.0  | 32.0  |
| 7        | 64.1  | 64.1  | 64.1  | 64.1  | 64.1  |
| 8        | 132.8 | 132.8 | 132.8 | 132.8 | 132.8 |
| 9        | 49.9  | 49.9  | 49.9  | 49.9  | 49.9  |
| 10       | 120.4 | 120.4 | 120.4 | 120.2 | 120.2 |
| 11       | 164.4 | 164.4 | 164.4 | 164.3 | 164.3 |
| 1′       | 98.2  | 98.2  | 98.2  | 98.6  | 98.6  |
| 2′       | 73.0  | 73.0  | 73.0  | 72.7  | 72.7  |
| 3′       | 73.3  | 73.4  | 73.2  | 75.7  | 75.7  |
| 4′       | 71.0  | 71.0  | 70.8  | 69.9  | 69.9  |
| 5′       | 75.1  | 75.1  | 74.9  | 74.0  | 74.1  |
| 6′       | 60.6  | 60.6  | 60.2  | 63.2  | 63.0  |
| 1″       | 125.5 | 125.0 | 125.3 | 125.0 | 125.4 |
| 2''      | 115.8 | 130.3 | 132.7 | 130.3 | 132.6 |
| 3″       | 145.5 | 115.7 | 114.8 | 115.7 | 114.9 |
| 4″       | 148.4 | 159.8 | 158.8 | 159.8 | 158.8 |
| 5″       | 115.8 | 115.7 | 114.8 | 115.7 | 114.9 |
| 6''      | 121.3 | 130.3 | 132.7 | 130.3 | 132.6 |
| 7″       | 145.5 | 145.1 | 143.7 | 144.9 | 143.6 |
| 8″       | 114.9 | 114.0 | 115.1 | 113.9 | 115.0 |
| 9″       | 165.8 | 165.9 | 165.9 | 165.9 | 165.9 |

Table 3. <sup>13</sup>C-NMR Data of Compounds 1 and 6–9. At 100 MHz in  $(D_6)DMSO$ ;  $\delta$  in ppm. Arbitrary atom numbering.

IR (KBr): 3590-3100, 2921, 1715, 1700, 1520. <sup>1</sup>H- and <sup>13</sup>C-NMR: see *Tables 2* and *3*, resp. ESI-MS (pos.): 543 ( $[M+Na]^+$ ). ESI-MS (neg.): 519 ( $[M-H]^-$ ). Tandem MS: see *Table 1*. HR-FAB-MS: 519.1476 ( $[M-H]^-$ , C<sub>25</sub>H<sub>28</sub>O<sub>12</sub>; calc. 519.1503).

Acid Hydrolysis. Compounds 1 and 6–9 were each applied to a TLC plate, and then hydrolyzed under HCl vapor at 60° for 40 min. After removal of excess HCl,  $\beta$ -D-glucose (Glc) was applied to the same plate as reference compound. The TLC plate was developed with CHCl<sub>3</sub>/MeOH/H<sub>2</sub>O/AcOH 16:9:2:2, sprayed with aniline-phthalic acid, and heated. All hydrolyzed compounds showed identical purple spots, with  $R_f$  values of 0.42.

## REFERENCES

- [1] R. Y. He, R. L. Nie, Acta Bot. Yunnan. 1980, 2, 480.
- [2] Y. Wang, J. S. Yang, Nat. Prod. Res. Dev. 1992, 4, 99.
- [3] H. Kikuzaki, Y. Kawasaki, S. Kitamura, N. Nakatani, Planta Med. 1996, 62, 35.
- [4] J. Z. Liang, D. J. Han, H. Li, X. B. Yuan, Chin. Tradit. Herbal Drugs 1982, 13, 7.
- [5] R. Y. He, S. J. Feng, R. L. Nie, Acta Bot. Yunnan. 1984, 6, 341.
- [6] E. L. Ghisalberti, Phytomedicine 1998, 5, 147.
- [7] J. S. Liu, M. F. Huang, Chin. Tradit. Herbal Drugs 1982, 13, 433.
- [8] N. Pant, D. C. Jain, R. S. Bhakuni, Indian J. Chem., Sect. B 2000, 566.
- [9] Y. T. Di, X. Liao, S. L. Peng, J. Liang, L. S. Ding, Chin. Chem. Lett. 2003, 14, 1154.
- [10] W. Wang, F. Cuyckens, H. Van de Heuvel, S. Apers, L. Pieters, V. Steenkamp, M. J. Stewart, V. A. Lucyckx, M. Claeys, *Rapid Commun. Mass Spectrom.* 2003, 17, 49.

- [11] S. Rodriguez, J. L. Wolfender, K. Hostettmann, H. S. Evans, M. P. Gupta, Helv. Chim. Acta 1998, 81, 1393.
- [12] J. X. Li, P. Li, Y. Tezuka, T. Namba, S. Kadota, Phytochemistry 1998, 48, 537.
- [13] Y. H. Luo, R. L. Nie, Acta Pharm. Sin. 1992, 27, 125.
- [14] L. M. Zhang, X. D. Xu, C. Y. Hou, J. S. Yang, *China J. Chin. Materia Medica* 1996, *13*, 557.
  [15] B. L. Hu, H. F. Sun, S. F. Fan, *Acta Bot. Sin.* 1992, *34*, 886.

Received August 12, 2005